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Abstract

OpenStreetMap, a crowdsourced geographic database, provides the only
global-level, openly licensed source of geospatial road data, and the only
national-level source in many countries. However, researchers, policy makers,
and citizens who want to make use of OpenStreetMap (OSM) have little
information about whether it can be relied upon in a particular geographic
setting. In this paper, we use two complementary, independent methods to
assess the completeness of OSM road data in each country in the world. First,
we undertake a visual assessment of OSM data against satellite imagery,
which provides the input for estimates based on a multilevel regression and
poststratification model. Second, we fit sigmoid curves to the cumulative
length of contributions, and use them to estimate the saturation level for
each country. Both techniques may have more general use for assessing the
development and saturation of crowd-sourced data. Our results show that
in many places, researchers and policymakers can rely on the completeness
of OSM, or will soon be able to do so. We find (i) that globally, OSM
is ∼83% complete, and more than 40% of countries – including several
in the developing world – have a fully mapped street network; (ii) that
well-governed countries with good Internet access tend to be more complete,
and that completeness has a U-shaped relationship with population density
– both sparsely populated areas and dense cities are the best mapped; and
(iii) that existing global datasets used by the World Bank undercount roads
by more than 30%.

Introduction

The world’s roads, and their extent and spatial distribution, have enormous
implications for economic growth, urban development patterns, access to
natural resources, and global climate change. Road transportation accounts
for more than 80% of passenger travel [1] and nearly 20% of greenhouse gas
emissions from fuel combustion [2]. Moreover, roads represent one of the
most permanent commitments to how and where we will live in the future
[3].

Accessible, complete, and accurate geospatial data on the world’s road
network are therefore valuable not just for trip planning and navigation, but
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also for understanding questions as diverse as the drivers of deforestation
[4] and urban poverty reduction [5]. Yet until recently, no global map
nor global accounting of these roads existed. Google Maps and similar
proprietary products do not permit geospatial analyses such as calculating
road lengths. A new effort to map global roads — the Global Roads Open
Access Data Set — meanwhile focuses only on inter-urban roads, and does
not cover city streets [6].

Even basic cross-national data on the length of roads are lacking. One
review from 1998 notes that the data derived from the International Road
Federation (IRF) World Road Statistics [7] and UN statistical yearbooks
“are patchy, with frequent gaps and many large changes that are often quickly
reversed ... it appears impossible to construct data that are consistent
either across countries or over time” [8]. The extent to which the data have
improved in recent years is unclear, and IRF’s sources for road network
length for many countries are missing or incomplete.

OpenStreetMap, an ambitious open-data initiative that has emerged and
grown rapidly in recent years, promises to fill this gap. Just as Wikipedia
provides a volunteer-written encyclopedia, OpenStreetMap (OSM) provides
a free, openly licensed, volunteer-contributed repository of geographic
information. OSM launched in 2004 with a focus on streets and roads,
and has subsequently expanded to map buildings, land uses, points of
interest and other geographic features [9]. As of May 2017, ∼3.8 million
contributors had created a database with ∼411 million roads, coastlines,
administrative boundaries and other linear features known as “ways” [10].
Applications of OSM to date include humanitarian mapping following
earthquakes, epidemics and other disasters [11], hydrological modeling [12],
downscaling of population estimates to small geographic areas [13], research
on diverse subjects from urban morphology to urban farming [14, 15], and
even adult coloring books [16].

The usefulness of OSM for these purposes, however, depends on the
completeness of the data and other aspects of data quality. As discussed
later in this section, research has found that most Western countries which
have been assessed appear to have a relatively complete road network
in OSM. The picture in low-income countries, however, is much more
uncertain. Researchers, policy makers, or citizens who want to make use of
OSM road data, therefore, have little information about the extent upon
which OSM can be relied. The absence of a global completeness assessment,
meanwhile, hampers the use of OSM for research in economics, urban
planning, environmental studies and related fields, such as analyses of
worldwide patterns of travel behavior or urban development. Moreover, the
benefits of OSM may be greatest in low-income countries where completeness
is most uncertain, given the relative lack of official or commercial alternative
geographic data products.

Most quality assessments of OSM and other Volunteered Geographic In-
formation (VGI) datasets perform a comparison with an official government
or proprietary reference dataset (e.g. [17, 18, 19, 20]). Normally, the length
and position of the features in both datasets are compared, although there
are other approaches such as comparing the output of routing algorithms
(e.g. [21, 22]; for a more comprehensive review, see [23]).

Initially, researchers asked about the completeness of the OSM road
network, the positional accuracy of the data, and the accuracy of attributes
that indicate the type of road, speed limits, turn restrictions, and other
information. Some studies continue to focus on completeness, for example
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through improving computational techniques that can compare OSM to a
reference dataset [20]. However, by 2011, others had already noted that
OSM research was shifting away from completeness assessments and towards
the accuracy of attribute information, such as the opening times of points
of interest [24]. More recently, studies have examined the quality of OSM
data on building footprints [25], bicycle or pedestrian infrastructure [21, 26],
points of interest [27], place names [28], and the classification of areal
features [29].

This shift, however, may be somewhat premature, given that research
has focused on Europe and North America, and the completeness of the
OSM road network in most of the world is unknown. While early as-
sessments found significant gaps [18, 19, 30, 31], more recent studies of
European countries have found that the network is virtually complete, and
is comparable to or better than official or proprietary data sources [17, 22].
The same does not appear to be true, however, in other parts of the world,
such as China, Tehran and Brazil [32, 33, 34].

The only global effort that sheds light on the completeness in the OSM
road network quantifies the number of changes to roads in a geographic
area, and identifies where saturation has been reached, as defined by a
growth rate of ≤ 3% for three or more years [35]. However, by focusing
on the number of changes (new additions or edits), this approach does
not distinguish between the addition of new roads versus minor edits that
update attributes or make small improvements to positional accuracy, or
between major versus minor additions. Moreover, this approach can say
little about the completeness of areas that have not reached saturation.
The definition of saturation in [35] is also restrictive; the authors find that
only 11% of Europe (by land area) has reached saturation, even though the
country-level studies noted above imply that completeness is likely to be
much greater.

In addition to the lack of information on the level of completeness,
there is little evidence that helps explain the considerable heterogeneity
in completeness, and other aspects of data quality, between and within
countries. Some countries and regions are better mapped than others,
but the reasons are still unclear. In one U.S study, there is no detectable
relationship between OSM data quality and demographic variables, possibly
because such a small percentage of the population contributes to OSM,
and because many edits are done by users who do not live locally [36].
European-focused studies have noted that dense areas appear to be better
mapped in OSM [17, 19], presumably because there are more potential
contributors with local knowledge. However, local contributions are only one
manner through which the OSM database expands. Imports from official
or proprietary data sources, and responses to humanitarian crises help to
promote completeness [35]. OSM contributors also gather at “mapping
parties” and other social events to make focused updates [37]. The most
frequent contributors to OSM have contributed edits in more than one
country, perhaps through tracing aerial imagery, or as a result of a vacation
or other trip abroad [38].

In this paper, our objective is first to assess the completeness of the
OSM road network, worldwide. We provide country-level estimates of
completeness that are derived from two independent data sources. Note
that we restrict our attention to completeness, a fundamental measure of
geographic data quality, and do not assess positional accuracy or other
measures commonly employed in the literature.
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Second, we aim to shed light on the reasons for the global heterogeneity
in completeness, and help explain why some geographic regions are more
complete than others. Third, we provide new estimates of the total length
of road for each country in the world, and offer a comparison between the
OSM-derived roadway stock and official statistics and World Bank data.

Methods

The simplest way to assess completeness, and the method used by most
OSM completeness studies to date, is to compare the OSM database to a
comparison dataset from an authoritative source. At the global scale of
our analysis, however, no comparison dataset of real roads exists. Most
lower-income countries have no readily available data from a national
cartographic agency or similar organization. Commercial mapping products
such as Google Maps have restrictive licenses, and may not be complete
themselves in parts of the world. We therefore assess OSM completeness
through two complementary approaches – (i) a visual comparison with
aerial imagery, and (ii) fitting parametric models to the historical growth
of the OSM street network.

Armed with our estimates of completeness, we then estimate the length
of road network in each country, through dividing the existing length of
mapped roads in OSM by our estimated fraction complete.

Visual assessment

Sampling and assessment procedures

Our visual assessment is based on a stratified and probability-weighted
sample of 45 points in each country. We implement our own sampling
algorithm in the QGIS geographic analysis software to (i) select a random
point and (ii) overlay streets in the OSM database against aerial or satellite
imagery provided by Google through the OpenLayers plugin, at a scale of
1:5000. The number of missing street edges in the visible area (i.e., the
screen view centered around the sampled point) is manually counted, and
the script automatically counts the number of street edges already present
in the OSM database. Here, we use the term “edge” in its graph-theoretic
sense to denote the portion of a street between two nodes (intersections).

The imagery includes streets from Google Maps, which aids in identifying
roads where the image was low-resolution or obscured by trees. However,
the main source is the actual aerial image, given that our observations
indicate that the Google Maps data themselves are not complete in many
parts of the world. An example is shown in fig. 1. In a small number of
these cases we supplemented the Google imagery with the imagery from
Bing, which is also available through the OpenLayers plugin. In order to
focus our sampling efforts, we exclude 56 small dependencies, principalities
and unrecognized countries, such as American Samoa, Greenland, Palestine
and North Cyprus, which account for 0.2% of the global population.

Due to the geographic projection used, the size of the area included
in a single observation varies with distance to the equator, but is approxi-
mately 1.2 km2 at 45 degrees latitude in France. In total, we assess 8370
observations, with a mean of ∼72 street edges in the OSM database and
∼10 missing edges per observation. The visual assessment was based on a
February 2015 version of OSM. Therefore, we update the fraction complete
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to account for additions between February 2015 and January 2016. For
example, if our February completeness estimate for a country was 60%,
and road length grew by 10% between February and January, our updated
estimate would be 66%.

Most of the land area of most countries is sparsely populated, but most
roads are in urban areas. A simple random sample would be likely to
exclude urban areas, while a sample limited to urban areas would ignore
the lower-density areas where OSM may be less complete. Therefore, we
adopt a two-part sampling approach with the aim of reducing the variance
in our estimates.

The first sub-sample consists of a probability-weighted random sample
of 25 points from each country, with selection probabilities proportional to
the natural log of population density of each point. Population and density
estimates are taken from the 2013 Landscan population distribution dataset,
and population and density refer to that of the 30-arc second (∼1 km2) grid
cell within which the sampled point lies [39]. Points with zero population
are ignored. For the second sub-sample, we take a simple random sample
of 20 points, restricted to densely populated areas where the point exceeds
a country-specific density threshold.

The population density of rural areas varies considerably throughout
the world, as does the definition of “urban.” In Canada, the United States
and India, for example, places defined as urban must have a density of at
least 400 persons km-2, while the density threshold is 150 persons km-2

in Malta, 500 in the Philippines and 1500 in China [40]. Therefore, we

approximate the urban density threshold d∗ using Pf =
∑N

i=1 piI (di ≥ d∗),
where P is the population of a country, f is the fraction of population that
is urbanized in that country (using World Bank data), pi and di are the
population and density of each point i obtained from the 2013 Landscan
population distribution dataset [39], and I(·) is an indicator function. In
the United States, for example, d∗ = 1165 persons km−2, while in India,
d∗ = 11400 persons km−2.

Given our complex sampling design, we estimate the completeness of
each country based on the inverse sampling probability-weighted totals of (i)
OSM street edges (the numerator), and (ii) OSM plus missing street edges
(the denominator). Confidence intervals are estimated via a nonparametric
bootstrap procedure. We focus on the number of edges rather than road
length, partly for feasibility of counting, and partly because edges are the
natural units of additions to the OSM network. Since missing edges tend to
be shorter than those already present in the OSM database (see Section 2
of the S1 Appendix), our results for “edge completeness” will underestimate
the “length completeness” of OSM.

The analysts worked with a set of guidelines to ensure consistency in
the definition of a road, and thus which edges were counted as missing. For
example, driveways were ignored, as were unpaved paths leading to fields,
and roads that are platted but have not yet been constructed. However,
some degree of judgment was inevitable in the visual assessment. Although
an exact match is not possible, the aim was to be as consistent as possible
with the set of roads considered in the parametric modeling discussed below.
When counting which edges were already included in the OSM database,
only those tagged with the following highway tags were considered: mo-
torway, motorway link, trunk, trunk link, primary, primary link, secondary,
secondary link, tertiary, residential, road, unclassified, or living street.

For example, driveways (excluded from the visual assessment) are gen-
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Fig 1. Example visual assessment. Street data from OSM is overlaid
on satellite imagery of Kuwait City, Kuwait. Here, the network is 99%
complete, with 2 out of 300 edges missing. The red lines indicate street
edges in the OSM database. The green lines (highlighted with a white oval)
are missing edges. Satellite imagery source: Google.

erally tagged in OSM as service and would be excluded from the set of
roads that we consider in the main analysis. Similarly, unpaved paths are
generally tagged as track and would be similarly excluded.

Multilevel estimates of visual assessments

The bootstrapping procedure gives wide confidence intervals, because of
the limited sample size within each country, and the wide variation in the
number of edges and completeness across a country. To improve precision, we
use a multilevel regression and poststratification (MRP) model [41], which
draws on information from similar countries to provide tighter and more
accurate confidence bounds than is possible when considering a country-
level sample in isolation. Data are partially pooled across countries based
on country-level covariates such as GDP and Internet access.

The MRP model has found particular relevance within political science
and survey research, where its estimates are characterized by less error,
higher correlations and lower variance [41, 42]. The MRP model has two
further advantages beyond its statistical properties. It allows us to estimate
the impacts of grid-cell density and the country-level covariates on the
completeness of the OSM database. It also enables us to make out-of-
sample estimates of completeness at the grid-cell level, not just at the
country-level, and to illustrate the intra-country heterogeneity.

The first step of MRP is the multilevel regression, as in [43]. At the
local (30-arc second grid cell) level, our predictor is population density.
At the country level, our four predictor variables are GDP per capita
(at purchasing power parity), Internet penetration (proportion of Internet
users), population size, and the World Bank’s “voice and accountability”
governance indicator, which “captures perceptions of the extent to which a
country’s citizens are able to participate in selecting their government, as
well as freedom of expression, freedom of association, and a free media” [44].
Population and GDP enter in log form. All country-level data are from
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the World Development Indicators and Worldwide Governance Indicators
published by the World Bank [45], with imputation for countries with
missing data. The full data set is provided as supplementary information.

Formally, for each observation i in country j ∈ {1, . . . ,m}, we observe
the number Sij of road edges in the OSM database, and the real number of
edges Tij , and estimate the following. At the first level:

Tij ∼ Poisson
(

exp
(
βj1 + βj2 log(dij) + βj3 (log(dij))

2
))

(1)

Sij ∼ Binomial
(
Tij , f

(
βj4 + βj5 log(dij) + βj6 (log(dij))

2
))

(2)

where dij is the local population density and f is the logit link function.
At the second level, the coefficients are drawn from a distribution as in

Eq. 3. Importantly, the coefficients are not a deterministic function of the
country-level covariates, but rather are drawn from a distribution that is
centered on those covariates:

βj ∼ N (α+ γZj, Ω) (3)

where βj , α are vectors of length 6 (given that there are six grid-cell coeffi-
cients for each country j, βj1 . . . βj6); γ,Zj are m×6 matrices of coefficients
and country-level covariates; and Ω is the variance-covariance matrix.

The model is estimated in a Bayesian framework using the open-source
PyStan software [46]. We run the model for 10,000 iterations spread
across ten independent chains. Half of the iterations are used for burn-in
and the remainder are thinned to every fifth iteration, giving us a usable
sample of 1,000 iterations. The Bayesian framework is primarily used
for computational reasons, and our weak priors (Cauchy(0,2) based on
standardized coefficients) are designed to help convergence rather than to
incorporate prior information. Almost identical results are obtained from a
weaker Cauchy(0,5) prior.

The second step of the MRP process is to apply the estimates out-of-
sample to the entire globe. Based on the grid-cell level Landscan densities
and the country-level coefficients βj1 . . . βj6, we estimate the number of road
edges and the fraction complete in each 30-arc second grid cell. The country-
level completeness estimates are then calculated as the mean completeness
of each grid cell within that country, weighted by the estimated number of
edges.

Saturation of contributions

We employ a second, novel method of estimating completeness which relies
only on details in the underlying OSM database itself. The total length
of road mapped in a given region has a natural maximum. That is, the
summed length of all roads in a region must converge to the actual extant
length. Postulating that growth in road length in OSM is characterized in
each country by growing interest at the beginning and saturation at the
end, we approximate the time series of contributed length with a sigmoid
shape. From the asymptote of the sigmoid, we infer the actual length of
all roads. We are not the first to use a saturation criterion for the rate of
changes; however, previously [35] an arbitrary threshold rate was used to
indicate saturation (≤ 3% for each time interval over three or more years),
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while we allow for country-specific saturation levels to emerge from the
model.

The OSM history dataset [47] provides a record of each version of each
object in the OSM database, including objects that were subsequently
deleted. The exceptions are objects whose original contributor did not agree
to a license change in 2012; about 1% of data was lost as a result [48]. We
use a custom Python script to extract every version in the contribution
history of every node (i.e., each geolocated point) and every way (a linear
sequence of nodes) that is tagged “highway,” which is a generic attribute
for a roadway, including pedestrian paths and trails. We obtain the time
stamp of each roadway (including its deletion date, if applicable), calculate
its length, and identify the country where it is located using a spatial query
against boundary data [49]. In this way, we build up a time series of the
total road length rendered in each region. For the length calculation and
the country lookup, we use a PostgreSQL/PostGIS spatial database. We
provide our Python code under an open-source license (see S1 Appendix),
allowing interested readers to replicate and/or update our findings.

In the main analysis in this paper, we restrict ourselves to roadways
that are intended for vehicle circulation; these ways are further tagged mo-
torway, motorway link, trunk, trunk link, primary, primary link, secondary,
secondary link, tertiary, residential, road, unclassified, or living street. How-
ever, we also show the growth in non-vehicle roadways, which largely consist
of pedestrian paths. For clarity, we refer to “roads” and “other paths” in
the remainder of this paper, where other paths are defined as roadways
that do not have one of the above tags.

In order to estimate the growth and saturation of street coverage,
we fit parametric models to the road length time series. While mostly
monotonic, additions to road length are occasionally sudden, as opposed to
steady. This is likely due to various kinds of bulk data imports (e.g. US
government TIGER road data), the release of new aerial imagery which
OSM contributors can trace [50], and “mapping parties” targeting localized
areas. In order to accommodate these jumps, we use nonlinear least squares
optimization to fit flexible functional forms which include up to four jumps
superposed on a smooth sigmoid shape. From several such shapes as well
as a linear growth model, we choose the best fitting functional form for
each country, as measured by a mean-squared error criterion. These models
are specified in detail in the S1 Appendix.

We follow the same process for two types of sub-national information.
We fit parametric models to the road length time series at (i) the highest
sub-national administrative level from GADM, such as U.S. states, German
Länder and South African provinces; and (ii) each country-specific quintile
of the distribution of grid-cell densities. We choose the best-fitting sigmoid
functional form for each sub-national administrative unit and quintile. Incor-
porating subnational information in this way provides an independent check
on the parametric fitting, in the sense that the sub-national asymptotes, as
estimated from the fits, should add up to the country-level asymptote.

Combining the estimates

We have two estimates of completeness for each country. The visual as-
sessment is likely to be accurate but imprecise, while the parametric fit
is precise but may detect a false saturation level (for example, due to a
temporary hiatus in additions to the OSM database). We therefore combine
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the estimates as follows. In the 61 countries where the estimates match
(i.e., the parametric estimate lies within the 95% confidence interval of the
multilevel estimate, or where the difference between the estimates is 0.05
or less), we use the parametric fit. In the other 124 countries for which
both estimates exist, we use the multilevel estimate derived from the visual
assessment.

We also use the parametric fit in a further 68 countries, accounting for
0.3% of the global population, where no multilevel estimate is available.
This is normally because we did not conduct the visual assessment for the
reasons discussed in Visual assessment.

Our combined completeness estimates, coupled with the existing length
of roads in the OSM database, provide the opportunity to make new
estimates of the total length of the road network in each country, as in
Eq 4. We exclude countries (all 5 of which are small-island states) where
completeness is estimated at < 0.05.

roadstotal = roadsOSM2016
× frcComplete−1

OSM2016
(4)

Results

We proceed by first presenting the results from our multilevel regression
and poststratification model, which are based on the visual assessment.
These results yield intrinsic insights into the reasons why completeness
varies between and within countries, as well as allowing us to estimate the
completeness of OSM in conjunction with the parametric fits. We present
those completeness estimates in Completeness estimates, followed by our
estimates of road length in Quantifying road length.

Why countries get mapped

The standardized coefficients from the multilevel model are reported in
the S1 Appendix, as are plots of the posterior densities of all coefficients.
The structure of the model makes the coefficients difficult to interpret
directly. For example, the impact of GDP affects completeness through
both the intercept of the grid-cell level equation and interactions with local
population density (in both log and log squared form), as can be seen in Eq
3 and Eq 2. Therefore, the most complete interpretation of the coefficients
is given through a plot of the impact of each variable, as shown in panel A
of fig. 2.

The most notable finding is that completeness has a ∪-shaped rela-
tionship with density. As shown in panel A of fig. 2, OSM is most likely
to be complete at low and high densities. Thus, interurban roads that
traverse areas with minimal population are largely present in OSM, and
high-density urban areas, with many potential local contributors and good
Internet access, are also well mapped. The types of communities that are
most likely to have missing streets are smaller towns and villages.

Small countries tend to be more complete, as do those with more open
governance and higher Internet penetration. GDP has no clear impacts on
completeness, except at the lowest densities.

One measure of the performance of our model is to compare the country-
level predicted values with the raw estimates (weighted by inverse sampling
probabilities) from the visual assessment. The estimates should not be
identical, as the multilevel model draws strength from partial pooling with
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Fig 2. Predicted partial effects in multilevel model. The red line
(intercept-only model) shows the baseline predictions, across the density
spectrum, when all country-level variables are at their means. Each of the
other lines shows the predicted fraction complete after a one standard
deviation increase in one country-level predictor. 95% credible intervals are
shaded. The thin grey line shows the cumulative distribution of grid-cell
level densities in the world.

observations in “similar” countries, but should be correlated and mutually
unbiased. Fig. 3 indicates that this is the case.

Our multilevel model also provides estimates of the number of road
edges, which we use to weight each grid cell when aggregating the grid-cell
fraction complete predictions to the country level. As shown in panel B
of fig. 2, the country-level predictors have little impact on the number of
road edges, except at low densities. Unsurprisingly, density itself is a strong
predictor of the number of roads. The standardized coefficients and plots
of posterior densities are shown in the S1 Appendix.

Completeness estimates

Our multilevel model of the completeness of OSM suggests that it was ∼83%
complete in January 2016, with a 95% confidence interval of 81%-84%. Close
agreement is obtained from the country-level parametric fits, which give
an estimate of 87% when summed to the global level and weighted by the
estimated road length in each country. We also fit a sigmoid model to
the growth in the global road stock (fig. 4), which suggests even greater
completeness (97%). However, given that the figure suggests that recent
growth at the global scale has been linear rather than sigmoid-shaped (fig.
4), we prefer the multilevel and country-level estimates. To reiterate, this
measure of completeness only considers the presence of geographic features,
and does not consider attribute information such as street names, nor other
measures of data quality such as positional accuracy.
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Fig 3. Visual assessments of completeness: observations vs
multilevel model. The two sets of estimates correlate well at the
country level, with no evidence of bias, adding confidence to our model
predictions. The multilevel estimates are obtained from poststratification
using out-of-sample predictions for each grid cell in a country. The red line
indicates equality (i.e., the 45◦ line).

Fig. 4 shows the growth in the OSM database for the ten largest countries
(by road length) and the corresponding parametric fit. The asymptote
and multilevel model estimate (with confidence interval) are plotted as
horizontal lines. Similar plots for all countries and World Bank-defined
country groupings are provided in the S1 Appendix. Fig. 5 shows the best
completeness estimate for each country, generated by combining the visual
assessment and parametric fit as described in Combining the estimates.
Tables with the full estimates are in the S1 Appendix.

Of the 185 countries for which we have estimates from both the multilevel
model and parametric fits, 77 are more than 95% complete. For 47 of them,
our completeness has the highest level of confidence, in that the estimates
from the multilevel model, country-level fits, and sub-national fits all
indicate completeness of more than 95%. (Because the sigmoid model is
asymptotic, 100% completeness is never achieved.)

There is considerable heterogeneity in estimated completeness. At one
end of the spectrum, countries as varied as Kiribati, Afghanistan, Egypt
and China are all less than one-third complete. There is also heterogeneity
across the density gradient within countries, as shown in fig. 6.

Fig. 7 shows comparisons of the five completeness estimates for each
country: (i) bootstrapping of the visual assessment; (ii) the multilevel model
of the visual assessment; (iii) the country-level fits; (iv) the summation of
fits for lower-level administrative geographies to the country level; and (v)
a similar summation over density quintiles to the country level. In most of
the countries where the estimates do not match, the OSM database is still
growing rapidly, making it difficult to identify the saturation point through
the parametric model. Brazil in fig. 4 provides a good example.
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Fig 4. Growth in OSM dataset: parametric fits and visual assessment. The largest ten countries by
road length are shown, along with the global data. The S1 Appendix provides similar plots for all countries. The
thick red line shows the actual data for roads, along with the predicted values, asymptote and visual assessment.
The thin red line shows that other paths, which are mainly pedestrian routes, continue to grow in some countries
even where the road network is complete. The decline in the US is mainly due to the bulk import of TIGER
data, which has subsequently been cleaned (e.g. forest tracks are retagged as tracks rather than roads). Years
shown indicate January 1.
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Fig 5. Completeness of the OSM dataset, by country, January 2016. The fraction complete is
estimated by the parametric model, where that estimate falls within five percentage points or the 95% confidence
interval of the multilevel model. Otherwise, the multilevel model is used.
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Fig 6. Completeness of the OSM dataset, by grid cell, January 2016. The fraction complete is
estimated by the multilevel model. The color intensity represents the number of estimated street edges, thus
highlighting parts of the world with a denser street network. The full-resolution image is available online.
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Fig 7. Comparison of methods. The largest ten countries by road
length are shown, and a similar plot for all countries is provided in the S1
Appendix. The bars indicate the bootstrapped and multilevel model
estimates from the visual assessment. The green makers indicate the
estimates from the parametric fits at the country level, and by subnational
density quintile and subnational administrative geography.
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+

Fig 8. Road length per capita

Quantifying road length

We find that the global stock of roads totals ∼39.7×106 km, or ∼5.6 m per
person. Interestingly, the United States accounts for ∼23.0% of the world’s
stock of roads. Fig. 8 shows the estimated road length per capita in each
country in the world.

We also find that the concerns over the quality of the IRF and similar
global roads statistics are well founded. Our OSM-based estimates of road
length exceed those from the IRF in the majority of countries (fig. 9). In
the world as a whole, our estimates are 134% of the IRF estimate. In 94
out of 190 countries, our estimate is more than 150% of the length reported
by IRF. Note that our comparison is conservative, as the IRF totals include
unpaved roads, and we drop countries where the IRF data specifically
exclude local or urban roads.

Some of the discrepancy may be caused by double-counting of dual
carriageways in the OSM database, where each side of a divided road is
represented as a separate way. This is unlikely to account for more than
a small part of the difference. One-way streets (a crude proxy for a dual
carriageway) only account for 2.0% of the ways in the OSM database, as of
May 2017 (see https://taginfo.openstreetmap.org/tags).

Limitations

There are several sources of uncertainty and other limitations associated
with our completeness estimates. Most importantly, contributions to OSM
do not exhibit deterministic behavior. Thus, not only are our parametric
fit functional forms heuristic, but our estimates have limited predictive
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Fig 9. Road length data from the International Road Federation are
substantially lower than OSM-based estimates. The red line indicates
equality (i.e., the 45◦ line).

power for future contributions in individual countries, which may occur in
jumps. We also assume that urban growth is slow and that additions to the
OSM database represent previously missing streets, whereas in reality the
street network is growing in physical terms. The relatively small sample
size in each country means that the confidence intervals from the visual
assessment, meanwhile, are often wide. To some extent, however, these
limitations are mitigated by our use of two independent methods.

Discussion and Conclusions

As the capabilities of Geographic Information Systems grow, and more
spatial data becomes available through GPS receivers and official sources,
there becomes an even greater need for publicly available sources of base
data layers, particularly roads. While proprietary systems such as Google
Maps may be suitable for trip planning and similar applications, they cannot
be used for most research and analytic purposes. Our results show that in
many parts of the world, OpenStreetMap (OSM) already fills that niche,
and that about 42% of countries in the world are more than 95% complete.
In other parts of the world, the OSM database is growing rapidly. At
the global level, we find that the world’s road network is ∼83% complete
(81%-84% with 95% confidence). Our results show that in many places,
researchers and policymakers can rely on the completeness of OSM, or will
soon be able to do so. In other regions, our results help to bracket the
uncertainty.

Our results can be used to assess the fitness for purpose of OSM in
individual countries, a contribution that is especially important given that
there is wide variation even within low-income countries. At one extreme,
we estimate that less than one-third of the streets in China, Egypt and
Pakistan are in the OSM database, compared to more than 95% in Cuba,
Ecuador and Syria as well as most European and North American countries.
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Moreover, our methods can be used to track the country-by-country
saturation of contributions, and identify the point at which more countries
become complete. Because in many places OSM may now be the most
authoritative data available even to local governments and agencies, better
knowledge of its completeness is essential if it is to be relied on for planning
and development purposes. In addition, knowledge of the completeness
of the existing data can indicate where further mapping efforts should be
directed, for example in emergency situations where humanitarian agencies
already make significant use of OSM. For researchers, sufficient meta-
knowledge including data completeness is necessary when using OSM road
data for modeling of urban automobility and travel/transportation behavior,
and local and climate-related emissions, among other outcomes in places
where government or authoritative data are not readily available.

More broadly, our findings demonstrate a technique which may be
generally useful for assessing the development and saturation of Volunteered
Geographic Information and crowd-sourced data [35, 36, 51, 52]. Flexibly
modeling a modified sigmoid curve can capture a variety of processes
typical of user contributions, such as business listings, genetic databases, or
encyclopedia and dictionary entries.

Equally importantly, we provide a new country-level dataset of road
length that, unlike IRF’s World Road Statistics, is fully transparent and
easy to update. Despite their advertised limitations, the IRF data are
the basis for dozens of empirical papers in development economics [53],
transportation [54, 55] and energy policy [56], and also appear to underlie
other statistical compilations. In its World Development Indicators series,
the World Bank sources the data on road length to IRF. The CIA World
Factbook [57] does not cite individual sources, but the data are very similar
to those published by the IRF. Thus, until now, there has been no obvious
alternative to the IRF data.

Particularly in the poorest countries, we find that road supply is nearly
40% larger than suggested by IRF. In the world as a whole, our findings
indicate a total road length of 39.7×106 km or nearly 6 m per capita. Road
length and road length per capita have important applications in the global
study of economic development, transportation patterns, and pollution.
For instance, using values of 5–25 kg CO2e year−1 km−1 [58] for life cycle
emissions from petroleum-based and cementatious road surfaces, global
annual emissions associated with the construction and maintenance of roads
amortized over the lifetime of the road is on the order of 100–500 MT CO2e
year−1. In places where completeness is already very high, changes in the
OSM road database may even be used to indicate new road development.

Our findings also shed light on the factors that support the development
of a crowd-sourced geographic database. Contributing to OSM requires
access to the Internet, sufficient general resources such as education, geospa-
tial expertise and leisure time to be able to contribute, and laws which
permit the creation of non-government maps. In addition, the availability
of open and accessible government information may facilitate importation
of existing data to OSM. For example, most of the US road network was
originally imported from the US Census Bureau TIGER files [59].

As expected, the most dense parts of the world have a relatively complete
OSM network, likely because the most dense cities are home to many
potential mappers. More surprisingly, we find a ∪-shaped relationship, with
the best-mapped areas found at both ends of the density spectrum. In other
words, not just the most dense but also the least dense areas are well mapped
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— perhaps because interurban roads are easy to trace from satellite imagery,
or are already available through other sources. Consistent with intuition, we
also find that countries scoring high on governance indicators and those with
good Internet access tend to be more complete, and that small countries
tend to be more complete than large ones. The open governance indicator
may relate to the availability of geographic data, and even the ability of
private citizens to undertake mapping efforts. China, for example, restricts
private surveying and the publication of geospatial information.

Surprisingly, we find that income does not have a strong, independent
effect on OSM completeness. There are also some notable outliers, such
as Haiti and Nepal, where intense mapping efforts followed humanitarian
disasters. Overall, however, the use of satellite imagery means that OSM
contributors can be located in far-flung locations, and many contributions,
in particular to sites targeted by humanitarian aid, are made from remote
locations [37]. Thus, country-level factors have only limited predictive power
and the wide confidence intervals as well as endogeneity concerns mean that
our results here should not necessarily be given a causal interpretation.

A complete road network is only the first step in the development of an
openly licensed geographic database. For some applications, the usability
of OSM will depend on other aspects of data quality, such as positional
accuracy, and the presence of tags that indicate road names, speed limits,
and other attributes. In principle, our methods can be applied to these other
metrics of data quality as well. For example, the percentage of streets that
are named and have other attribute information should saturate over time.
The same is true for OSM data on buildings, pedestrian paths and points
of interest, and the reliability of the fitted curves can be complemented
with a visual assessment. By quantifying the completeness of voluntary
contributions to geographic information, the effort of the nearly 4 million
contributors can be harnessed for broader purposes.
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